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MODELING REPEATED MULTINOMIAL ROUTE CHOICES UNDER  

ADVANCED TRAVELER INFORMATION SYSTEM USING GENERALIZED 

ESTIMATING EQUATIONS  

WITH POLYTOMOUS LOGIT FUNCTION 
 

 

ABSTRACT 

Correlated multinomial route choice data were modeled under an advanced traveler information system 

(ATIS). A travel simulator was used as a dynamic data collection tool. The simulator uses realistic network 

and real historical traffic volumes. It provides five levels of ATIS and accounts for types of delay. A 25-

node and 40-link network was used. Sixty-three qualified subjects performed a total of 539 trial days. 

Forty-four distinct routes were chosen. The multinomial generalized estimating equation (MGEE) 

methodology was used with a generalized polytomous function and an exchangeable correlation structure. 

MGEEs account for the serial correlation between repeated choices made by the same subject as well as the 

correlation due to the overlapping between alternatives. The modeling results show that drivers can identify 

and follow the shortest path when they are provided with advice-free traffic information on all the network 

links. In addition, it is shown that the odds of choosing a certain shortest-path route, whether the drivers are 

advised or not, vary from route to route, depending on the characteristics of the route itself. It was proved 

that the proposed model could account for a correlation in the multinomial repeated route choices with 

simple computational effort, even for a large number of alternatives. 

 

Keywords: ATIS, multinomial route choice, repeated observations, routes’ overlap, MGEE 
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INTRODUCTION 

The implementation of ATIS technologies in real life is limited and still in its starting phases. Over the last 

decade, transportation research that would lead to a better understanding for the effect of ATIS on 

multidimensional route choice models in realistic complex networks was limited. The limitation was due to 

the computational effort needed. Especially when a relatively large network with overlapping links between 

routes is used and each participant made more than one observation (choice). In this paper, the Orlando 

Transportation Experimental Simulation Program (OTESP) was used to collect multidimensional route 

choice data. OTESP is an interactive windows-based computer simulation tool. It simulates commute 

home-to-work morning trips. A Portion of the city of Orlando network was captured from a GIS database 

(Figure 1). The network consists of 25 nodes and 40 links. This network has been carefully chosen from the 

Orlando network. It comprises different types of highways. It includes 6-lane principle arterials, 4-lane 

principle arterial, 6-lane minor arterial, 2-lane minor arterial and local collectors. The network also includes 

two expressways.  

The subject is presented with a real map for the network and has the ability to move his/her 

vehicle on the network from intersection to another. OTESP’s code is fed with real historical traffic 

volumes on all network links. Based on these volumes, the geometric characteristics of the network 

roadways, and the HCM standards, the simulator generates a random speed for every link on the network. 

This generated speed accounts for delays caused by intersections, recurring congestion, non-recurring 

congestion (incident), queuing at toll plazas, and weather condition effects. All links’ speeds are updated 

every time the subjects approach an intersection. The speed of a link, at a certain movement, controls the 

speed of the simulated vehicle so that the subject feels the delay. OTESP was distinctively designed to give 

the subject the feel of a realistic situation. Therefore, the simulator does not interfere with the accuracy of 

the information, whatever speed is generated for a particular movement (whether the travel time is provided 

to the subject or not) is assumed accurate for the current movement. The simulator provides the travel time 

value on every link as quantitative information while every link on the map takes a color representing its 

traffic congestion (green, yellow, or red for free, moderate, or congested flow). Therefore, the information 

given is both descriptive and prescriptive. Figure 1 shows an example of the OTESP’s user-interface and 

network. 

 At every trial day, OTESP provides one of five different scenarios (levels) of information/advice 

to the subject including: no information (scenario #1), pre-trip information without and with advice 

(scenarios #2 and #3, respectively), and en-route information (in addition to the pre-trip information) 

without and with advice (scenarios #4 and #5, respectively). During the actual experiment, OTESP presents 

ten simulated days (two days for each scenario). There is no difference in the travel time computations 

across the scenarios. The differences between the five scenarios are only in the level of the 

information/advice provided to subjects and whether they are pre-trip or en-route. OTESP also provides 

three different weather conditions (clear sky, light rain, and heavy rain). The Moore’s shortest path 

algorithm (1) has been employed in the code of OTESP to determine the travel-time-based shortest path 

from any node to the destination, which is introduced as advice to the subjects in some scenarios. The 

simulator starts and ends with a short survey to collect the subjects’ socio-demographic characteristics, 

preferences, perceptions, and feedback. A four-table database is created to capture all the 

information/advice provided and the traveler decisions. For detailed design and description of the simulator 

and the network, the reader is referred to Abdel-Aty and Abdalla (2,3). Abdel-Aty and Abdalla (3) 

illustrated the validity of the data and the simulator as a route-choice data collection tool.  

Two different kinds of correlation arose in this study because each subject made multiple route 

choices and because the chosen routes sometimes have overlapping links. These correlations must be taken 

into account. Otherwise the results will be biased (4,5). In this paper, a Multinomial Generalized Estimating 

Equations (MGEEs) methodology was used with generalized polytomous function and exchangeable 

correlation structure to account for the correlation.    

 

BACKGROUND 

A considerable number of studies have examined the potential benefits of providing pre-trip and en-route 

real-time information to travelers. Polydoropoulou et al. (6) and Khattak et al. (7) concluded that drivers 

exhibit some inertia for using their normal route, especially for home-to-work trips. Polydoropoulou found 

that drivers are more likely to divert to another route when they first learn of a delay before the trip. Drivers 

are less likely to divert during bad weather, as alternative routes might be equally slow. Abdel-Aty et al. (8) 

showed that traffic information should be provided with alternative route information as well.  
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Khattak et al. (7) found that travelers who are unfamiliar with alternative routes or modes are particularly 

unwilling to divert. This conforms to the study of Kim and Vandebona (9), which concluded that drivers 

who are familiar with alternative routes have a high propensity to divert from their normal routes. Accurate 

quantitative information might enable drivers to overcome their behavioral inertia. Further, the commuters 

were generally willing to comply with advice from a prescriptive ATIS (7,10). Adler and McNally (11) 

proved that travelers who are more familiar with the network are less likely to consult information. Bonsall 

et al. (12) found that user acceptance declined with decreasing quality of advice in an unfamiliar network. 

As familiarity with the network increased, drivers were less likely to accept advice from the system. 

However, Allen et al. (13) found that familiarity does not affect route choice behavior.  

 Recognizing the nature of ATIS information in dynamic environments, some analysts argued that 

trip choice decisions are based not only on objective information supplied by ATIS, but also on subjective 

information as perceived by travelers (14,15). For example, Mehndiratta et al. (16) proved that interest in 

travel information is a function of complex travel behavior, demographics, attitudinal characteristics, and 

technology interest related factors. Khattak et al. (17) concluded that commuters’ diversion behavior varied 

with their personal characteristics and the characteristics of the trip they were making at the time when the 

choice arose. Mahmassani and Chen (18) concluded that there is no clear measure of information effect on 

travelers that is independent of user choice behavior, prevailing traffic conditions, and network interactions. 

Conquest et al. (19) noted that commuters provided with information from ATIS could be classified as 

route changers, route and time changers, non-changers, and pre-trip changers. Polak and Jones (20) found 

that traffic information use depends on a range of personal, travel related and contextual factors. 

 

Methodological Background 

Several methodological challenges arise to model multidimensional route choice data in the provision of 

real-time information. In 1980s, most discrete choice models were calibrated by the Multinomial Logit 

(ML) models (21). An advantage of a ML model is its analytical tractability and ease of estimation. 

However, A major restriction of a ML model is its competitive structure, referred to as the Independence 

from Irrelevant Alternatives (IIA) property, which arises because all travelers are assumed to have the same 

error distribution in the utility term based on a Gumbel distribution. Therefore, ML models assume 

independence between alternatives, which is not true when routes overlapp, and independence between 

observations (choices), which is not true if each subject/driver has more than one observation (choice). 

Several techniques have been developed to overcome the limitation of ML models.   

The Nested Logit (NL) model (22) is an extension of the ML model designed to capture 

correlation among alternatives. It is based on the partitioning of the choice set into different nests. The NL 

model is designed to capture choice problems where alternatives within each nest are correlated. No 

correlation across nests can be captured by the NL model. When alternatives cannot be partitioned into 

well-separated nests to reflect their correlation, the NL Model is not appropriate. The ML model is not 

particularly suitable for deriving a competitive structure from data. Cascetta et al. (23) introduced the C-

Logit model as a ML model that captures the correlation among alternatives in a deterministic way. They 

add to the deterministic part of the utility function a term, called “commonality factor”, that captures the 

degree of similarity between the alternative and all other alternatives in the choice set. The lack of theory or 

guidance to which form of commonality factor should be used is a drawback of the C-Logit method. 

McFadden (14) presented the Cross-Nested Logit (CNL). That model is a direct extension of the NL model, 

where each alternative may belong to more than one nest. Similar to the NL model, the choice set is 

partitioned into nests. Vovsha and Bekhor (25) proposed and used a Link-Nested Logit model as an 

application of CNL model. The largest network they used contains one origin-destination pair, eight nodes, 

eleven links, and five routes. Papola (26) estimated a CNL model for intercity route choice with a limited 

number of alternative routes. Swait (27) proposes the Choice Set Generation Logit model, in which choice 

sets form the nests of a CNL structure. It was concluded that, for a realistic size network and a realistic 

number of links per path, the CNL model and its applications become quite complex and therefore 

computationally onerous. 

The above models are extensions of the ML models that use a logit utility function. An alternative 

technique is the Multinomial Probit (MP) model. It is derived from the assumption that the error terms of 

the utility functions are normally distributed. It uses a probit link function instead of a logit function. MP 

model captures explicitly the correlation among all alternatives (mostly relative to the overlap length). Yai, 

et al. (21) introduced a function which represents an overlapped relation between pairs of alternatives. 

Estimating MP model is intractable even for a relatively low number of alternatives. Moreover, the number 
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of unknown parameters in the variance-covariance matrix grows with the square of the number of 

alternatives(28). Ben-Akiva and Bolduc (29) introduced a multinomial probit model with logit kernel (or 

hybrid logit) model in intending to combine the advantages of logit and probit models. It is based on a 

utility function that has two error matrices. The elements of the first matrix are normally distributed and 

they capture correlation between alternatives. The elements of the second matrix are independent 

identically distributed. These combined models suffer from the same computational difficulties as the pure 

MP. In general, any application of hybrid logit or probit to a large-scale route choice case is questionable in 

terms of the computational effort needed for estimating the parameter coefficients and their marginal 

effects, especially for large networks. 

The second type of correlation that transportation models may suffer from, if exists, is correlation 

between repeated choices made by the same traveler. In binary models, relatively few studies have 

accounted for the correlation between repeated observations. Abdel-Aty et al. (30) and Jou (31) addressed 

this issue using individual-specific random error components in binary models with a normal mixing 

distribution. The standard deviation of the error components were found significant in both studies. This 

showed clearly the need for some formal statistical corrections to account for the unobserved heterogeneity. 

Jou and Mahmassani (32) used a general probit model form for the dynamic switching model, allowing the 

introduction of state dependence and serial correlation in the model specification. In the multinomial level, 

Mahmassani and Liu (33) used a multinomial probit model framework to capture the serial correlation 

arising from repeated decisions made by the same respondent. Garrido and Mahmassani (34) used 

multinomial probit model with spatial and temporally correlated error structure. Chen and Jovanis (35) used 

mixed linear model with repeated observations to model drivers’ compliance with en-route guidance. 

 Based on the above review, it is clear that research directed at investigating decision processes 

underlying route choice is not sufficiently understood. The literature is in need to a study that models 

travelers’ realistic route choices when provided with traffic information/advice in a relatively large 

network. Moreover, most related analyses (with few exceptions, some of them are mentioned above) 

ignored the correlation between repeated decisions made by the same traveler and the correlation due to 

overlapping between alternatives. It has been concluded also that there is a need for more efficient and 

statistically approved methodologies to handle the two kinds of correlation mentioned above. In this paper, 

a multinomial GEE model with exchangeable correlation structure was employed and compared with the 

corresponding model with independent structure. 

 

METHODOLOGY 

Liang and Zeger (36) originally specified the Generalized Estimating Equations (GEEs) methodology for 

modeling univariate marginal distributions, such as the binomial distribution. Their methodology provides 

a practical method with reasonable statistical efficiency to analyze discrete and correlated data. GEEs were 

introduced by Liang and Zeger as an extension of the Generalized Linear Models (GLM), which are 

extension of traditional linear models (37). Unlike GLMs, GEEs account for the covariance structure of the 

repeated measures. This covariance structure across repeated observations is managed as a nuisance 

parameter. The GEE methodology provides consistent estimators of the regression coefficient and their 

variances under weak assumptions about the actual correlation. Liang and Zeger (36), Zeger et al. (38) and 

Liang et al. (39) provide further details on the binomial GEEs. Lipsitz et al. 40) extended the methodology 

to model the correlation between repeated nominal categorical responses. Two kinds of correlation could be 

accounted for in the modeling processes, correlation between repeated choices made by the same subject 

(cluster correlation) and correlation between nominal alternatives (correlation due to the overlapping 

between routes). This section describes the MGEEs methodology adopted for this route choice application.  

 Suppose a number of t repeated choices are made by subject i (i=1,…,N), the total number of 

repeated choices for subject i is Ti, and K is the total number of alternatives available for all subjects at all 

observations. Two-level indicator variables can be formed as ikty  where; 1ikty   if subject i had the 

choice k at time t, while 0ikty   if otherwise. A (k-1) vector 1 , 1,[ ,....., ]it i t i K ty y y 
  can be formed to 

show the choice of subject i at time t. Each subject has iT  covariate vectors itx , a itx vector contains all 

the relevant covariates including the intercept, between- and within-subject covariates. Therefore, each 

subject has a matrix of covariates 1[ ,....., ]
ii i iTX x x  of dimension iT p . Where p is the total number 

of covariates excluding the intercept. 
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The distribution of ity is multinomial with the probability function 

1

( | , ) i

K
y kt

it it ikt

k

f y x  


  (1) 

      

Where ( | , ) { 1| , }ikt ikt it ikt itE y x pr y x     is the probability that subject i had the choice k at 

time t,  is a ( 1)p vector of parameters. When ity is binary, ikt  is usually modeled with logistic or 

probit link function (36). When k>2 with non-ordered response, the generalized polytomous logit link is 

appropriate (40).   

 

The matrix of coefficient parameters   is associated with the [(K-1) x 1] marginal probability vector  
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These marginal probability victors can be grouped together to form the [ ( 1)iT K  x 1] vector 
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Where iV  is the covariance matrix of iY . This covariance matrix, iV , is a function of   and other 

nuisance parameters   which is a function of the correlation between repeated choices made by the same 

subject i. Also, iV depend on the correlation between overlapped (or correlated) alternative routes. This 

covariance matrix, iV , has [ iT  x iT ] blocks. Each block has [ ( 1)K   x ( 1)K  ] elements. 

 

Estimating iV  

To get a general form of iV , the correlation matrix of the elements of iY  must be developed or estimated 

first. Therefore, the pairwise correlation between the (K-1) elements of isY and itY  which accounts for 

correlation between observations s and t of subject i, must be determined. A typical element of the 

correlation matrix of the elements of iY  is, for any pair of response levels j and k and pair of times s and t, 

 

( , ) [ ]ijs ikt ijs iktCorr Y Y E e e , where 
1/ 2

[ (1 )]

ikt ikt
ikt

ikt ikt

Y
e



 





 (5) 

 

 

The element ikte  is the residual for iktY . This residual ikte is a typical element of the residual vector 

1/ 2 [ ]it it it ite A Y   . Where itA is a function of   only, then it does not depend on correlation. That is, 

 

1 1 , 1, , 1,[ (1 ),..., (1 )]it i t i t i K t i K tA Diag         (6) 
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1/ 2 1/ 2 1/ 2

1 1 , 1, , 1,[( (1 )) ,..., ( (1 )) ]it i t i t i K t i K tA Diag      

     (7) 

 

The correlation matrix of iY = ( )iR   with ikte as a typical element can be written as 

 
1/ 2 1/ 2( ) ( ) var ( ) var( )i i i i i iCorr Y R e A Y A      (8) 

or,            
1/ 2 1/ 2var( ) ( )i i i i iY V A Corr Y A   (9) 

 

where,      1[ ,..., ]
ii i iTe e e , and 1[ ,..., ]

ii i iTA Diag A A   

 

Then, var( )iY depends on   and ( )iR   where the latter takes the effect of correlation in computing the 

covariance matrix var( )iY .  The matrix ( )iR   is iT  by iT  block diagonal matrix. Each block is 

[ ( 1)K   x ( 1)K  ] matrix. The tth diagonal block of ( )iR   is 
1/ 2 1/ 2

it it itA V A 
, also, the sth-row-and-

tth-column off-diagonal block ( )ist   is 

 
1/ 2 1/ 2( ) [( ) ( ) ]ist is is is it it itA E Y Y A        (10) 

 

 

Where, var ( ) [ ]it it it it itV Y Diag      and [ ]itDiag  denotes a diagonal matrix with elements of 

it on the main diagonal and zero off-diagonal elements. The diagonal blocks of ( )iR   depend only on 

( )i  . In these diagonal blocks, the diagonal elements are: 

 

( , ) 1ikt iktCorr Y Y   (11) 

 

and the off-diagonal elements are 
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Recall that these off-diagonal elements of the diagonal blocks of ( )iR  depend only on the tth choice of 

subject i from the K alternatives available. Equation 12 shows the correlation structure between the 

different alternatives. The dimensions of this correlation structure depend on the number of alternatives k. 

This clearly takes care of any correlation between the different alternatives of the multidimensional route 

choice model, usually due to overlapped distances between different routes. Then, the unknown elements of 

( )iR   are the elements of its off-diagonal blocks ( )ist  . It must be estimated.  

 

If ( )ist  is known, then ( )iR  is known, then the only unknown term in Equation 4 is  . The 

estimated   can be obtained by a fisher-scoring algorithm until convergence, 
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where m is the iteration number. A starting   can be obtained by applying the regular ML model. Iteration 

should continue until 
1m m    and 

1m m   . Where 
m  is the estimated ( )ist   in the mth step.  

 

Estimating ( )ist   

Zeger and Liang (36) proposed the exchangeable correlation structures that can be assumed and used in the 

binary models. This structure assumes equal correlation between repeated choices made by a subject. 

Lipsitz et al. (40) extended the same structure for the multidimensional models where any two observations 

on the same subject i and category k are equally correlated. Under this assumption, ( )ist   can be 

estimated as 
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where p is the total number of independent variables including any interactions. The residual vector 
1/ 2 [ ]it it it ite A Y  

, which is estimated by plugging 


 from a previous step of iteration into 

it itA and
. It is worth mentioning that the elements of the correlation matrix 

( )ist 
do not depend on 

the times s and t, but they do depend on the levels j and k. 

 

SUBJECT RECRUITMENT AND DATA COLLECTION 

Subjects were recruited from the University of Central Florida (UCF) using an experimental design based 

on their age and gender. They included faculty, staff, graduate and undergraduate students. In this paper, 

the driver characteristics that were investigated include gender, age, income, level of education, and driving 

experience. Students were chosen to represent low income, young, less driving experience, and moderate 

level of education. Faculty members were chosen to represent high level of education and high income 

level. Staff members were chosen to fill up the empty cells in the experimental design as they include high 

range of age, income and driving experience. In addition, the authors meant to recruit all subjects from 

UCF (which is the destination of the network used) to be their real destination in their morning commute 

trips. About 12% of the subjects were in their first 2 weeks of attending UCF, representing non-familiar 

travelers. While we acknowledge that the sample is not a random sample of the population due to funding 

limitations, as mentioned above a concerted effort was curried out to obtain a representative sample based 

on an experimental design from UCF (40,000 student population + 2000 faculty and staff). 

Subjects were instructed that their main task is to minimize the overall trip travel time by deciding 

when and when not to follow the information and/or advice provided. Subjects have been asked not to go 

through the simulation unless they had at least 30 minutes of spare time (the average simulation time was 

found to be 23.77 minutes) and were willing to concentrate and do their best in their choices. Moreover, 

during the simulation, the subjects’ response time was measured without notifying them, to insure that they 

are serious. A total of 65 subjects had run the simulation. Two subjects out of the 65 have been excluded 

from this study because their response time were found outliers in the normal distribution plotting of 

subjects’ response time (Z=3.21 and 3.78, Zcr = 2.57).  
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DATA DESCRIPTION 

A total of 630 trial days (trips) have been completed by the 63 qualified subjects. Out of these 630 trial 

days, 539 were in the drive mode, where the analysis of this paper focuses, and 91 were in the transit (bus) 

mode. In OTESP, the subject is required to make 10 morning home-to-work trips from the origin (assumed 

home) to the destination (UCF) under five different scenarios (levels of ATIS), two trial days per each 

scenario. The 539 routes of these trips were identified and categorized by the sequence of links that were 

traversed on a given trip. The chosen routes were ranked and numbered by their frequency of use. These 

numbers were used as routes’ IDs. The results showed that 44 distinct routes have been chosen during the 

539 experimental trial days. Table 1 shows the sequence of links of the 44 chosen routes and their 

frequency of use. 

The network used consists of mainly four east-west arterials that take the driver from the origin to 

the destination. Five minor arterials and local collectors allow the driver to divert from one main arterial to 

another. The four main arterials are named MA1, 2, 3 and 4. The remaining analysis of this paper considers 

these four main arterials together form the choice set that was available to all subjects in all 539 trial days 

of this analysis. MA1 is physically the aggregation of two chosen routes, chosen route #1 and 2. Both of 

these two chosen routes consist mainly from expressway links. Therefore, MA1 represents the expressway 

alternative on the network. The other three main arterials MA2, MA3, and MA4 are physically coinciding 

with the chosen routes # 3, 7, 9, respectively. MA2 is a 6-lane arterial while MA3 is a 4-lane arterial with 

relatively high number of traffic lights. MA4 is a rural 2-lane 2-way arterial with speed limit that is 

approximately equal to those of MA2 and MA3. MA1 has the higher speed limit among the four 

alternatives with few traffic lights because it consists mainly from expressway links. 

 The 44 chosen routes of this study were aggregated to the above four main arterials. A chosen 

route was situated to a certain main arterial if and only if the chosen route overlaps with this main arterial 

in a longer distance than does it with any of the other three main arterials. For example, the chosen route # 

24 belongs to MA2 because the former overlaps with the latter in links # 19, 20, 21, and 39, where the 

summation distance of these four links are greater than the overlapping distance between the chosen route # 

24 and any of MA1, MA3 or MA4. 

Based on historical volumes and an algorithm (2, 3), the simulator calculates the speed of every 

link for every movement on the network (each link has its own normal distribution from which this link’s 

travel time is chosen). When the subject moves from a node to another all the links’ travel times are 

updated. The simulator saves to a database the travel time of all 40 links of the network every time the 

subject moves from a node to another. 

In the analysis phase, and after identifying the 44 distinct chosen routes, the travel time of these 44 

routes were computed for every trial day. One of the 44 travel time values represents the actual travel time 

of the subject on that trial day. The other 43 travel time values represent what would have been the travel 

time for that trial day if the subject had chosen one of the other 43 routes. As for the four main arterials, the 

travel time was calculated as the average of all the routes that constitute each arterial. The travel time of the 

chosen arterial was taken as that of the actual chosen route.  

The simulator provided five different levels or scenarios of ATIS to the subjects including: no 

information (scenario #1), pre-trip information with and without advice (scenarios #2 and #3, respectively), 

and en-route information (in addition to the pre-trip information) with and without advice (scenarios #4 and 

#5, respectively). Therefore, in 80% of the trial days (scenarios 2 to 5), all links’ level of congestion was 

shown to the subjects in quantitative (travel time) and qualitative (green, yellow, red links for free flow, 

moderate, congested links, respectively). In addition, in 40% of the trial days (scenarios 4 and 5), subjects 

are provided with the travel-time-based shortest route as an advice. Figure 2 shows the average travel times 

of the 539 trial days categorized by the scenario of each trial day and the main arterial to which the chosen 

route is belonging to. On average, MA1 had the least travel times on the network because it represents the 

only expressway links on the network. Scenario 1 had the highest travel times where no information was 

provided to the subjects. On the other hand, Figure 2 shows that the average travel time is gradually 

reduced with the increase of the level of information/advice provided (scenarios 2 to 5). This proves the 

benefits of providing traffic information to drivers in reducing travel time. Among the four main arterials, 

MA1 (expressway links) had the least variation in the travel time between the five different scenarios of 

ATIS. This means that the gain from providing traffic information to drivers is higher for the non-

expressway links than the expressway ones. This showed that drivers diverted easily or more frequently 

from non-expressway links to the advised route and saved travel time. While, those who were driving on 

expressway links and advised to an alternative route were less likely to divert.   
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MULTINOMIAL ROUTE CHOICE MODELING 

The proposed multinomial GEE method with generalized polytomous logit function was employed to 

model correlated route choices. The categorical dependent variable has four alternatives, MA1, MA2, 

MA3, and MA4. These four alternatives form the fixed choice set that was available for all subjects at all 

trial days. The reference alternative for which all attributes in the analysis are set equal to zero is MA4. 

This was decided because this main arterial had the least frequency over the other three main arterials 

(Table 1). The dependent variable takes on a value of 1 to 4. The observed distribution of the dependent 

variable is shown in Table 1. The independent variables include: 

1. Age; “1” if subject’s age > 30, “0” otherwise 

2. Income; “1” if household income > $65,000, “0” otherwise  

3. Education; “1” if graduate school or higher, “0” otherwise 

4. Shortest 1; “1” if MA1 was the shortest path, “0” otherwise 

5. Shortest 2; “1” if MA2 was the shortest path, “0” otherwise 

6. Shortest 3; “1” if MA3 was the shortest path, “0” otherwise 

7. Advised 1; “1” if MA1 was the shortest path and the trial day was under scenario #3 or #5 (i.e., MA1 

was given as advice), “0” otherwise 

8. Advised 2; “1” if MA2 was the shortest path and the trial day was under scenario #3 or #5 (i.e., MA2 

was given as advice), “0” otherwise 

9. Advised 3; “1” if MA3 was the shortest path and the trial day was under scenario #3 or #5 (i.e., MA3 

was given as advice), “0” otherwise 

10. Travel time 1; Travel time of MA1 

11. Travel time 2; Travel time of MA2 

12. Travel time 3; Travel time of MA3 

13. Travel time 4; Travel time of MA4 

 

Table 2 and Table 3 show the modeling results using the multinomial GEE model for the independent case 

(no correlation is considered) and for the proposed exchangeable correlation, respectively. The differences 

in the results are due to the effect of correlation. By comparing the overall and model-minus-intercept F-

statistic values for the two models, the exchangeable model was favored over the independent model 

(compare 83417.09 vs. 11464.98; 58572.64 vs. 49970.90). The number of degrees of freedom that were 

used for the overall model in the independent and exchangeable models were 42 and 43, respectively. The 

decrease was one degree of freedom that was used in estimating the fixed exchangeable correlation 

between any two choices made by the same subject and had the same alternative. The model does not 

predict but computes and incorporates the correlation between two choices with different alternatives, 

mostly due to the overlapping distance between them, in the variance-covariance matrix of the dependent 

variable as discussed in the methodology part of this paper. The model came up with three logistic 

equations for the four alternatives (MA1 vs. MA4; MA2 vs. MA4, MA3 vs. MA4). These equations are: 

 

1

4

log 65.12 3.42 2.36 5.00 22.15 1 11.65 2 13.23 3

5.56 1 4.70 2 4.87 3 6.00 1 2.35 2 0.67 3 9.56 4

MA

MA

age Income Education S S S

A A A TT TT TT TT





 
        

 

      

 

 

2

4

log 35.39 2.41 1.01 1.99 21.62 1 12.17 2 7.01 3

26.60 1 11.34 2 25.95 3 4.28 1 2.18 2 0.36 3 7.36 4

MA

MA

age Income Education S S S

A A A TT TT TT TT





 
        

 

      

 

 

1

4

log 3.63 9.38 2.49 12.37 10.49 1 48.61 2 22.67 3

3.69 1 44.56 2 1.41 3 0.79 1 0.10 2 1.00 3 1.89 4

MA

MA

age Income Education S S S

A A A TT TT TT TT





 
        

 

      

 

 

Where the symbols Sx, Ax, and TTx refer to the effects “Shortest x”, “Advised x”, and “Travel time x”, 

respectively where x is the main arterial number. Using the above equations, the probability of choosing an 
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alternative given a set of values for the independent variables is simple compared to using any probit link 

function (probit models). Moreover, computing a certain marginal effect of any variable on choosing an 

alternative is straightforward and simple regardless of the number of alternatives used in the model, which 

is not the case for the corresponding multinomial probit models. In the above equations, exponentiating the 

estimated regression coefficient yields the odds of choosing the corresponding alternative vs. choosing the 

base alternative MA4 for each one-unit increase in the corresponding explanatory variable. For example, 

the ratio of odds for a one-unit change in the travel time of MA2 is equal to 2.18
0.11e  . This shows the 

ease of this model compared to the corresponding probit models. 

 Table 2 and Table 3 show the parameter coefficients for each equation with the corresponding t-

statistic of each effect. Table 2 and Table 3 show also the F-statistic for each effect in the overall MGEE 

model. These values show the individual significance of every effect in the overall model and determine if 

changing the value of this effect statistically changes the probability of choosing a certain alternative or not. 

A certain effect may show up as significant in an equation while show up as insignificant effect in another 

equation. All the 13 effects included were found significant. The parameters’ coefficients in Table 3 show 

that older drivers (>30), those with high household incomes, and those with high level of education are, in 

general, more likely to choose MA1, MA2, or MA3 than MA4, i.e., they are more likely to choose the 

expressways and/or the multilane arterials. Recall, MA4 is a 2-lane 2-way rural arterial. However, the 

increase in this likelihood in some cases is not statistically significant. For example, these above three 

socioeconomics do not affect the probability of choosing MA2 vs. MA4 (t-statistics = 1.07, 0.45, 0.74 < 

1.96).  

  

The three effects “Shortest 1”, “Shortest 2”, and “Shortest 3” measure the effect of providing information 

without advice to the subjects. The significance of the effect “Shortest 1” in the first equation with a 

positive coefficient parameter (22.15) shows that the probability of choosing the first alternative MA1 

increases if this route is the travel-time-based shortest route on the network, even with providing advice-

free information. This means that the subjects were able to use and benefit from the qualitative and 

quantitative information provided to them. Moreover, they might be able to identify and then use the 

shortest route themselves using the travel times given to them. The same interpretation goes to the 

coefficient parameters of the effects “Shortest 2” and “Shortest 3” in Equations 2 and 3, respectively. By 

comparing these three coefficients (22.15, 12.17, 22.67), differences were noticed. This indicates that the 

marginal effects of these variables are not the same. However, they measure the same independent variable 

for different alternatives. Then, it can be concluded that providing traffic information to drivers increases 

the likelihood of choosing the shortest path (identified by them or given to them by the information system) 

but with odds different from shortest path to another depending on its own characteristics. 

     To measure the effect of advising a certain arterial in addition to providing traffic information on 

all links of the network to the subjects, the three effects “Advise 1”, “Advise 2”, and “Advise 3” were 

employed. Advising MA1 or MA2 to the subjects increased their likelihood to be chosen (coefficients of 

29.60 and 11.34, respectively). While, advising MA3 as the shortest path for a certain trial day does not 

affect its probability of being chosen (t-statistic = 0.24). This was not surprising because MA3 is well 

known by its regular congestion due to its high accessibility and high number of traffic lights. Recall, in 

this study, most of the subjects were familiar with the network. Similar to the effect of information without 

advice, the coefficient parameters “Advised 1” in equation 1, “Advised 2” in equation 2, and “Advised 3” 

in equation 3 (29.60, 11.34, 0.00) show that advising a certain route to the drivers may and may not 

increase its likelihood to be chosen depending on the characteristics of the route itself. In this analysis, 

advising expressway or 6-lane arterials increased their likelihood to be chosen (MA1 and MA2). While 

advising 4-lane arterial with high density of traffic lights did not affect its likelihood to be chosen. Then it 

can be concluded that the characteristics of a certain route affects its likelihood to be chosen if advised to 

drivers.   

 The effect of the travel time was represented in this model by the variables TT1, TT2, TT3, and 

TT4. The first three effects hold negative coefficients in the three equations with significant effect for TT1 

in equation 1, TT2 in equation 2, and TT3 in equation 3. This clearly shows that the probability of choosing 

a certain route decreases when its travel time increases. The effect TT4, the travel time of the base route 

MA4, showed up as a positive significant variable in the three equations. Therefore, the probability of 

choosing the other route (not choosing this base route) increases with increasing the travel time of the base 

alternative. 
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CONCLUSIONS 

This paper modeled multinomial route choice under ATIS using correlated data. A travel simulator was 

used as a data collection tool. A relatively large realistic network was used. Traffic information with and 

without advice was provided to 63 subjects who have completed 539 trial days. Forty-four distinct routes 

were chosen. Correlation between repeated choices made by the same individual and/or between routes that 

have overlapping distance was considered.  Multinomial Generalized Estimating Equations (MGEEs) 

methodology was proposed and used with generalized polytomous function and exchangeable correlation 

structure to insure validity of statistical models. The resulting model was compared with a similar 

independent model (without correlation structure). The proposed model was favored over the independent 

model. The analysis showed that the travel-time gain by providing traffic information is higher for non-

expressway than expressway routes. The modeling results showed that the subjects were able to use and 

benefit from the qualitative and quantitative information provided to them. Moreover, they might be able to 

identify the shortest route themselves using the travel times given to them. It was also concluded that the 

odds of choosing a certain shortest route (advised or recognized by drivers using the advice-free traffic 

information provided) varies from route to another and depends on the characteristics of the route itself. For 

example, the analysis of this paper showed that advising expressway or 6-lane arterials increases their 

likelihood to be chosen (MA1 and MA2). While advising 4-lane arterial with high density of traffic lights 

does not affect its likelihood to be chosen.  The paper addresses the benefits and use of ATIS in route 

choice in a microscopic level (one driver at a time). Future work should address the issue of market 

penetration which will likely affect the performance of the network. This paper underlines the importance 

of modeling correlation in the multinomial route choice models. The proposed model proved to account for 

correlation in the multinomial repeated route choices with simple computational effort compared to the 

existing methodologies. 
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Table 1. The Chosen Routes and the Main arterials 

Chosen-Route Links Frequency Main Arterial Frequency 

R1 22,5,6,29,35,19,20,21,39 168 

 M
ai

n
 a

rt
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1
 (

M
A

1
) 

3
7

4
 

R2 22,5,6,7,8,9,10,40 77 

R4 22,5,6,7,8,9,32,38,39 43 

R5 22,5,6,7,8,31,37,21,39 33 

R6 22,5,28,12,35,19,20,21,39 20 

R12 22,5,6,7,30,36,20,21,39 8 

R15 22,5,6,29,13,14,37,21,39 7 

R20 22,5,6,7,30,14,37,21,39 4 

R21 22,5,6,7,8,9,10,16,38,39 3 

R27 22,5,6,29,13,36,20,21,39 2 

R28 22,5,6,7,8,31,15,16,40 2 

R33 22,5,28,28,6,7,8,9,32,38,39 1 

R34 22,5,6,7,8,9,32,32,10,40 1 

R35 22,5,6,7,8,31,15,38,39 1 

R38 1,23,28,28,6,7,8,31,37,21,39 1 

R39 1,23,6,7,30,14,37,21,39 1 

R40 22,27,33,17,18,35,13,36,20,21,39 1 

R41 22,5,28,28,6,7,8,9,10,40 1 

R3 22,27,33,17,18,19,20,21,39 60 

M
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n
 A

rt
er
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3
 (

M
A

2
) 

9
9
 

R8 1,23,28,34,18,19,20,21,39 12 

R13 22,27,11,34,18,19,20,21,39 7 

R14 22,5,28,34,18,19,20,21,39 7 

R19 22,5,28,12,13,36,20,21,39 5 

R22 22,27,11,12,35,19,20,21,39 3 

R24 1,23,28,12,35,19,20,21,39 2 

R29 1,23,6,7,30,36,20,21,39 1 

R31 22,5,6,7,8,9,32,16,40 1 

R37 1,23,28,12,13,36,20,21,39 1 

R7 22,27,11,12,13,14,15,38,39 12 
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3
 (

M
A

3
) 

3
7
 

R11 22,27,11,12,13,14,37,21,39 8 

R16 22,5,28,12,13,14,37,21,39 6 

R18 22,27,11,12,13,36,20,21,39 5 

R23 1,23,28,12,13,14,37,21,39 2 

R26 22,5,6,29,13,14,15,38,39 2 

R30 22,5,6,29,13,14,15,16,40 1 

R36 1,23,28,12,13,14,15,38,39 1 

R9 1,2,3,4,26,32,38,39 9 
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4
 (

M
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4
) 

2
9
 

R10 1,2,24,30,36,20,21,39 9 

R17 1,2,3,25,31,37,21,39 5 

R25 1,2,3,4,26,10,40 2 

R32 1,2,24,30,14,37,21,39 1 

R42 1,2,24,8,9,32,38,39 1 

R43 1,2,24,8,9,10,40 1 

R44 1,2,24,8,31,15,38,39 1 

 Total  539 Total 539 
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Table 2. Modeling Results for the Multinomial GEE Without Correlation Structure 

 Equation 1 Equation 2 Equation 3 

 MA1 Vs. MA4 MA2 Vs. MA4 MA3 Vs. MA4 

Parameter Coeff. t-stat Coeff. t-stat Coeff. t-stat 

Intercept -41.31 -12.17 -24.93 -8.14 6.02 1.64 

Age 0.04 1.15 0.42 0.55 6.70 5.50 

Income 2.27 3.42 3.85 4.50 2.44 2.98 

Education Level 0.22 0.21 -2.36 -1.26 8.73 7.01 

Shortest 1 12.71 9.92 13.37 10.64 -18.65 -17.52 

Shortest 2 11.65 9.84 13.07 10.23 -23.48 -12.32 

Shortest 3 1.65 1.83 -7.66 -5.63 22.67 16.71 

Advised 1 7.93 9.24 21.79 16.86 3.69 3.67 

Advised 2 7.26 5.12 12.95 8.22 -6.38 -2.98 

Advised 3 -6.81 -7.04 -18.10 -11.33 1.41 1.35 

Travel Time 1 -6.07 -24.52 -4.35 -11.27 -0.89 -10.73 

Travel Time 2 -2.34 -19.66 2.23 -20.18 -0.17 -2.82 

Travel Time 3 -0.67 -19.72 -0.36 -5.89 -0.96 -18.87 

Travel Time 4 9.44 26.15 7.36 13.34 1.89 22.90 

       

Overall Summary Statistics      

 D.O.F F-stat     

Overall model 42 11464.98     

Model minus intercept 39 4970.90     

Intercept 3 80.11     

Age 3 12.10     

Income 3 7.96     

Education Level 3 20.44     

Shortest 1 3 197.39     

Shortest 2 3 117.23     

Shortest 3 3 167.53     

Advised 1 3 96.60     

Advised 2 3 44.95     

Advised 3 3 57.78     

Travel Time 1 3 202.42     

Travel Time 2 3 151.75     

Travel Time 3 3 400.09     

Travel Time 4 3 478.48     
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Table 3. Modeling Results for the Multinomial GEE with Exchangeable Correlation 

Structure 

 Equation 1 Equation 2 Equation 3 

 MA1 Vs. MA4 MA2 Vs. MA4 MA3 Vs. MA4 

Parameter Coeff. t-stat Coeff. t-stat Coeff. t-stat 

Intercept -65.12 -3.80 -35.39 -1.89 -3.63 -0.29 

Age 3.42 2.56 2.41 1.07 9.38 3.87 

Income 2.36 1.12 1.01 0.45 2.49 1.69 

Education Level 5.00 2.43 1.99 0.74 12.37 4.48 

Shortest 1 22.15 2.74 21.62 3.51 -10.49 -1.62 

Shortest 2 11.65 2.12 12.17 3.56 -48.61 -12.12 

Shortest 3 13.23 5.04 -7.01 -3.13 22.67 6.57 

Advised 1 29.60 3.85 5.56 0.76 3.69 0.67 

Advised 2 -4.70 -1.22 11.34 3.79 -44.56 -10.03 

Advised 3 -4.87 -0.64 -25.95 -2.98 1.41 0.24 

Travel Time 1 -6.00 -8.80 -4.28 -4.04 -0.79 -3.33 

Travel Time 2 -2.35 -5.61 -2.18 -6.03 -0.10 -0.67 

Travel Time 3 -0.67 -3.58 -0.36 -2.31 -1.00 -5.14 

Travel Time 4 9.56 7.03 7.36 3.99 1.89 3.24 

       

Overall Summary Statistics      

 D.O.F F-stat     

Overall model 43 83417.09     

Model minus intercept 40 58572.64     

Intercept 3 22.05     

Age 3 10.31     

Income 3 2.21     

Education Level 3 10.93     

Shortest 1 3 79.65     

Shortest 2 3 703.45     

Shortest 3 3 57.34     

Advised 1 3 21.51     

Advised 2 3 48.55     

Advised 3 3 19.91     

Travel Time 1 3 100.18     

Travel Time 2 3 36.34     

Travel Time 3 3 15.8     

Travel Time 4 3 81.22     
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Figure 1. A Spot view for OTESP (shown is scenario #5) 
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Figure 2. Average travel time for the main arterials categorized by the 5 scenarios.  


